Oxyfunctionalization of Steroids by Dioxiranes: Site and Stereoselective C14 and C17 Hydroxylation of Pregnane and Androstane Steroids.

Paolo Bovicelli, Paolo Lupattelli^{*}, Ventura Fiorini

Centro C.N.R. di studio per la Chimica delle Sostanze Organiche Naturali, Dipartimento di Chimica, Università "La Sapienza", P.le A. Moro, 5 - 00185 Roma, Italy.

Enrico Mincione

D.A.B.A.C., Università della Tuscia, V. S. Camillo De Lellis, 01100 Viterbo, Italy.

Abstract: Dimethyldioxirane showed to be site and stereoselective in the C-H oxygen insertion at C_{14} and C_{17} positions of pregnane and androstane steroids. Fine steric control and evidence for the influence of the carbonyl group on the dioxirane reactivity are reported.

Dimethyldioxirane 1 and methyltrifluoromethyldioxirane 2 (scheme), new and powerful oxyfunctionalizing reagents, appear to be very effective for the selective hydroxylation of steroidal carbons.

The reported hydroxylation at the benzylic C₉ of estrone¹, at C₂₅ of cholestane derivatives² and at C₅ of the bile steroids³ are significant examples. They suggest a fine control of dioxirane reactivity.

For a better understanding of the stereoelectronic control operating and with the aim of functionalizing other useful steroidal positions, we also submitted some pregnane and androstane steroids to the oxidation by 1^4 .

As reported in the scheme, $5,\alpha$ -androstan- $3,\beta$ -ol acetate 3 was selectively oxyfunctionalized at C₁₄ to give the corresponding 14, α -hydroxy derivative 9 (50% conv., 85% yield).

The same site- and stereoselective functionalization was observed for pregnanes 5 and 6 which afforded the corresponding $14,\alpha$ -hydroxy derivatives 11 and 12 (40% conv., 90% yield).

In the case of 17, β -methyl-5, α -androstan-3, β -ol acetate 4, we observed the selective and unexpected hydroxylation at C₁₇, 10 being obtained as the only reaction product (50% conv., 90% yield)⁵.

The preferential attack of dimethyldioxirane 1 to the C_{14} carbon atom compared to other steroidal tertiary carbon atoms (C₅, C₈, C₉) is explained by the less hindered steric environment as shown by molecular models.

The lack of reactivity of tertiary C_{20} -H bond of 5, despite the known chemical behaviour of the isopropylic moiety², appears to be due to the conformational arrangement of C_{20} -H bond which is shielded by the C_{18} methyl group, as examination of models reveals.

Finer steric controls regulate the reactivity of the C₁₇-H bond. In fact only when the C₂₀ position is unsubstituted, as in 4, the dioxirane approaches the C₁₇-H bond⁶. Therefore the following C-H bond scales of reactivity resulted for steroidal structures: C₂₅-H isopropyl \approx C₅-H β^3 > C₁₄-H α and C₁₇-H methyl substituted > C₁₄-H α >> other tertiary positions.

Moreover evidence of the influence of the carbonyl group on the dioxirane reactivity is also reported. Thus, whereas the androstane 3 reacted with 1 to give the C_{14} oxyfunctionalized compound 9, the

^{*} To whom correspondence should be addressed

corresponding 17 keto derivative 7 did not react at all. This chemical behaviour could be due to a carbonyldioxirane dipole interaction inhibiting the approach of dioxirane to the C_{14} position.

As a matter of fact the 17, β -acetoxy and rostane 8 easily reacted with 1 to give the corresponding 14, α -hydroxy derivative 13⁷.

Higher conversions were observed using methyl-trifluoromethyl dioxirane 2 (\approx 80% conv. at 0°C in 3hrs).

The shown reactivity of 1 with steroidal carbons appears to be very unusual and mimics enzymatic reactions.

With regards to synthetic implications of the C_{14} hydroxy functionalization of steroids, new access to the ecdysonic hormones⁸ having the α , C_{14} -OH could result.

REFERENCES

- 1. Bovicelli, P.; Lupattelli, P.; Mincione, E.; Prencipe, T.; Curci, R.; J. Org. Chem., 1992, 57, 2182-2184.
- 2. Bovicelli, P.; Lupattelli, P.; Mincione, E.; Prencipe, T.; Curci, R.; J. Org. Chem., 1992, 57, 5052-5054.
- 3. Bovicelli, P.; Gambacorta, A.; Lupattelli, P.; Mincione, E.; Tetrah. Lett., 1992, 33, 7411-7412.
- 4. As a general procedure 4 eq. of dimethyldioxirane (0.1M solution in acetone) were added to a stirred solution of the substrate in dichlorometane at r.t. and left to react 24 hrs. Evaporation of the solvent gave crude products.
- 9: ¹H-nmr δ(ppm): 0.81 (6H, bs, C₁₈-H and C₁₉-H), 1.99 (3H, s, CH₃COO), 4.65 (1H, M, C₃-H). ¹³C-nmr δ(ppm): 38.1 (C₁₇), 44.2 (C₅), 44.9 (C₁₃), 47.1 (C₉), 73.6 (C₃), 84.1 (C₁₄), 170.9 (COO).
 10: ¹H-nmr δ(ppm): 0.64 (3H, s, C₁₈-H), 0.81 (3H, s, C₁₉-H), 1.16 (3H, s, C₂₀-H), 1.99 (3H, s, CH₃COO), 4.66 (1H, m, C₃-H). ¹³C-nmr δ(ppm): 44.6 (C₅), 46.6 (C₁₃), 49.8 (C₁₄), 54.0 (C₉), 73.7 (C₃), 82.1 (C₁₇), 170.9 (COO).
 11: ¹H-nmr δ(ppm): 0.71 (3H, s, C₁₈-H), 0.76 (3H, s, C₁₉-H), 0.80 (6H, d, J=5 Hz, C_{21-H} and C₂₂-H), 1.98 (3H, s, CH₃COO), 4.65 (1H, m, C₃-H). ¹³C-nmr δ(ppm): 52.8, 53.6 (C₉ and C₁₇), 73.7 (C₃), 85.7 (C₁₄), 170.9 (COO).
 12: ¹H-nnr δ(ppm): 0.66 (3H, s, C₁₈-H), 0.81 (3H, s, C₁₉-H), 0.92 (3H, t, J=7.3 Hz, C₂₁-H), 1.99 (3H, s, CH₃COO), 4.66 (1H, m, C₃-H). ¹³C-nmr δ(ppm): 44.6 (C₅), 46.9 (C₁₃), 50.1 (C₁₇), 54.1 (C₉), 73.7 (C₃), 84.3 (C₁₄), 170.9
- (COO).
 A right trajectory for the electrophilic oxygen insertion into a C-H bond of alkanes explaining these fine controls, was
- A right trajectory for the electrophilic oxygen insertion into a C+r bolid of alkales explaining these time controls, was recently proposed. Bach, R.D.; Andres, J.L.; Owensby, A.L.; Su, M.D.; McDonall, J.J.W.; results in press.
- 13: ¹H-nmr δ(ppm): 0.79 (3H, s, C₁₉-H), 0.88 (3H, s, C₁₈-H), 2.01 (3H, s) and 2.02 (3H, s) (C₃ and C₁₇), 4.98 (1H, bs, C₃-H), 5.15 (1H, dd, J₁=9 Hz, J₂=6 Hz, C₁₇-H). ¹³C-nmr δ(ppm): 39.6 (C₅), 46.8 (C₁₃), 47.0 (C₉), 69.9 (C₃), 81.2 (C₁₇), 83.5 (C₁₄), 171.5, 170.9 (C₃ and C₁₇).
- 8. Slama, K; Romanuk, M.; Sorm, F.; Insect hormones and bioanalogues, Springer-Verlag, Wien-N.Y., 1974, cap. III, 303-387.

(Received in UK 13 May 1993; accepted 23 July 1993)